Time-dependent simulations of quantum waveguides using a time-splitting spectral method
نویسندگان
چکیده
The electron flow through quantum waveguides is modeled by the time-dependent Schrödinger equation with absorbing boundary conditions, which are realized by a negative imaginary potential. The Schrödinger equation is discretized by a time-splitting spectral method, and the quantum waveguides are fed by a mono-energetic incoming plane wave pulse. The resulting algorithm is extremely efficient due to the Fast Fourier Transform implementation of the spectral scheme. Numerical convergence rates for a one-dimensional scattering problem are calculated. The transmission rates of a two-dimensional T-stub quantum waveguide and a single-branch coupler are numerically computed. Moreover, the transient behavior of a three-dimensional T-stub waveguide is simulated.
منابع مشابه
Time-Dependent Real-Space Renormalization Group Method
In this paper, using the tight-binding model, we extend the real-space renormalization group method to time-dependent Hamiltonians. We drive the time-dependent recursion relations for the renormalized tight-binding Hamiltonian by decimating selective sites of lattice iteratively. The formalism is then used for the calculation of the local density of electronic states for a one dimensional quant...
متن کاملTime-dependent analysis of carrier density and potential energy in spherical centered defect InGaAs/AlGaAs quantum dot (SCDQD)
Interaction and correlation effects in quantum dots play a fundamental role in defining both their equilibrium and transport properties. Numerical methods are commonly employed to study such systems. In this paper we investigate the numerical calculation of quantum transport of electrons in spherical centered defect InGaAs/AlGaAs quantum dot (SCDQD). The simulation is based on the imaginary time...
متن کاملTime-dependent analysis of carrier density and potential energy in spherical centered defect InGaAs/AlGaAs quantum dot (SCDQD)
Interaction and correlation effects in quantum dots play a fundamental role in defining both their equilibrium and transport properties. Numerical methods are commonly employed to study such systems. In this paper we investigate the numerical calculation of quantum transport of electrons in spherical centered defect InGaAs/AlGaAs quantum dot (SCDQD). The simulation is based on the imaginary time...
متن کاملPolarization-dependent spectral broadening of femtosecond pulses in silicon waveguides
We investigate the polarization dependence of the spectral broadening of femtosecond pulses inside silicon waveguides by using finite-difference time-domain (FDTD) simulations. Our FDTDmodel includes the anisotropic dependency of predominant nonlinear effects in silicon: Kerr effect, two-photon absorption, and Raman effect. In addition, free-carrier absorption and free-carrier dispersion effect...
متن کاملLarge Vacuum Rabi Splitting in a Single Nitride-Based Quantum WellMicrocavity
Here, we report a theoretical detailed study of Vacuum Rabi Splitting (VRS) in the system of Nitride Single Quantum Well (SQW) within a semiconductor microcavity. Distributed Bragg Reflectors (DBRs) containing ZnTe/ZnSe multilayers including GaAs microcavity and ( SQW at the center of microcavity, has been considered. Upper and lower exciton-polariton branches obtaine...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Mathematics and Computers in Simulation
دوره 81 شماره
صفحات -
تاریخ انتشار 2010